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This paper describes an algorithm for approximating the single scattering model for light 
diffusion through clouds or haze of constant optical density. The clouds are contained between 
two single valued surfaces. The algorithm assumes that the sun is directly overhead, but gives 
convincing pictures for other sun directions. Its efficiency comes from approximating the 
exponential decay of transmitted light by a quadratic polynomial, and from vectorization on 
the Cray 1. ~3 1986 Academic Press. Inc. 

1. INTRODUCTION 

Blinn [l] has described the physical basis for a single scattering model of light 
diffusion through clouds or smoke, made up of many small particles. Under the 
assumptions of this model, the light from the source may be scattered by one of the 
particles, and is also attenuated by other particles between the source and the 
scatterer, and between the scatterer and the eye, but secondary scattering from one 
particle to another and then to the eye is ignored. Blinn [l] showed some pictures of 
clouds over a simulated planet, and suggested the study of their geometric forms as 
an area for further research. Voss [2] has recently produced excellent cloud simula- 
tions using a fractal optical density defined as a function of three variables. In this 
paper, I consider the mathematically simpler situation of a constant optical density 
in the region between the graphs of two related functions of two variables, which 
define the clouds’ extent above and below a mean cloud plane. 

Dungan [3] has made pictures of semi-transparent clouds over terrain, integrating 
the cloud density along each ray. Fishman and Schacter [4] show an example of 
opaque ellipsoidal clouds, generated by a height field algorithm. In both these cases. 
the arrays of clouds look excessively regular. 

Mendelbrot [5] has used fractals to generate much more random clusters of stars. 
Snitily [6] has also generated clouds using a fractal height field algorithm, and 
introducing transparency with a hit count for multiply covered pixels and a blurring 
post-process. 

Norton, Rockwood, and Skolnoski [7] used a tabulated periodic cloud texture 
function to generate real-time cloud simulations for pilot training, while cleverly 
suppressing those periodic terms which might cause an a&sing moire, with a 
technique they call “clamping.” 

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore 
National Laboratory under Contract W-7405ENG-48. The U.S. Government’s right to retain a nonexclu- 
sive royalty-free license in and to the copyright covering this paper, for governmental purposes, is 
acknowledged. The views and opinions of the author expressed herein do not necessarily state or reflect 
those of the United States Government thereof, and shall not be used for advertising or product 
endorsement purposes. 
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FIG. 1. The function f(x, y) and its mirror image -f(x, y) bound pointed edge clouds, symmetrical 
with respect to the cloud plane. 

2. CLOUD SHAPES USING HEIGHT FIELDS 

At a small scale clouds have a random fractal wispiness, and also at larger scales, 
a fractal distribution of sky coverage (Lovejoy [S]). But at a medium scale, one is 
impressed by a wavelike periodicity in cloud shapes, presumably caused by periodic 
waves in the atmospheric disturbances which formed them. Here I model the large 
scale distribution by a polynomial, and the medium and small scales by a series of 
superimposed long-crested sine waves, with different wave vectors, amplitudes, and 
phases. In the limit when enough terms are included, these series recapture the 
fractals which result from inverse fourier transforms. Here we are content with 
approximations using from 5 to 15 terms. 

Heightfields (see [4 or 91) defined by mathematical functions yield efficient hidden 
surface algorithms, since the function evaluations are vectorizeable. A combination 
of polynomials, square roots, absolute values, and trigonometric terms can be used 
to compute a function f( x, y ) defining the clouds’ height above a mean cloud plane, 
and also the, depth of the clouds below this same plane. Where f is negative, the 
clouds are’ absent. Such a scheme would give clouds with mirror symmetry and 
pointed “equator” edges at the reference plane z = H, as in the cross section in Fig. 
1. Therefore, f(x, y) was modified to give two new functions g(x, y) and h(x, y), 
which have infinite derivative where f(x, y) = 0, so that they meet smoothly 
at the equator, as in Fig. 2. The> function g(x, y) defines the height of the clouds 
above the reference plane and {he function h(x, y) defines the depth of the clouds 
below the plane. In order to flatten the bottoms of the clouds, h(x, y) is organized 
so that it approaches a finite limit as f(x, y) increases. 

The formulas for g and h in terms of f are as follows: 

t = (abs(f) + c)* 

g = sign (sqrt(t - c*), f) 

h = -g/sqrt (t + c”). 

FIG. 2. The functions g(x, y) above the cloud plane, and h(x, y) below, define rounded edged clouds 
with flattened bottoms. 
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Here c is a positive constant, independent of x and y and sign (a, b) is the sign 
transfer function sign (a, b) = JaJb/(bl. Effectively, 

g = l/f 2 + 2cf 

so that 

4 f-+-c 
dr=/fF 

which approaches inikity as f approaches 0. Similarly, dh/df approaches infinity as 
f approaches 0. Thus the cloud crosses the reference plane with a vertical tangent, as 
in Fig. 2. The use of the absolute value of f and the sign transfer function assures 
that g will be defined and negative whenever f becomes negative. This facilitates the 
height field computations, which interpolate between function values calculated at 
predetermined samples in a vertical scan plane. As discussed in [9}, we establish a 
vector { yi } of increasing sample y values of the form yi = H/(u( maxi + 1 - i)), 
so that the distribution of picture plane heights fi = (H + g(cwy,, yi))/y, is ap- 
proximately (I per pixel, for nearby clouds and as well as distant clouds. 

For positive f, h has the form - {( f2 + 2cf)/( f2 + 2cf + 2c2), which ap- 
proaches - 1 as f approaches infinity, flattening the bottom of the clouds. The 
constant c affects the rate at which g diverges from f and h diverges from - 1, and 
thus affects the curvature at the equator. 

3. SINGLE SCATTERING CALCULATIONS 

In this section, we analyze the single scattering model introduced in Section 1, for 
clouds defined by two height functions as in Section 2, in the special case that the 
sun is directly overhead and the density is constant. 

Assume, as in Fig. 3, that the viewer is at the origin, with the picture plane 
perpendicular to the y axis, and we wish to compute the cloud intensities along the 
vertical scan line x, 
direction vector V = 
this ray has coordinates (ay, y, By). 

FIG.~. ~erayfromtheoriginthroughthepointP=(u,l,8)onthescrecameetsthedoudplancin 
the point Q = (x. y, H). 
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FIG. 4. A viewing ray from the eye piercing the cloud surface at Q and R. The light from the sun 
traverses the cloud along the segment SP before reaching the viewing ray. 

We first consider the case where this ray meets the cloud in a single segment, 
between Q = (ary,, yl, flyI) and R = (txyz, y,, by*). Figure 4 shows the projection 
in the yz plane of the slice plane x = cyy. 

Let P = (ay, y, By) be a representative scattering point along the ray QR. The 
vertical ray from P to the sun meets the top surface of the cloud at the point 
S = (ay, y, g(cuy, y) + H). We will write g(cyy, y) simply as g(y) below. 

The sunlight hitting the cloud at S is attenuated by the scattering along ray SP. 
Reinterpreting the calculations in Blinn [l], we model the absorption by an optical 
density p per unit length. The total density along SP is then p p, or p (g(y) + H 
- by), and the fraction of sunlight reaching P is exp( - p( g( y) + H - By)). (Note 
that our optical densities are interpreted using natural logarithms, rather than the 
usual logarithms to the base 10.) 

Let ds be an element of length along the ray QR. Then the fraction of energy 
scattered by points P on this element toward the eye is 

where o is an albedo, and q(a) is a phase factor depending on the angle a between 
the incidence direction SP and the viewing direction PQ (see Blinn [l]). 

This scattered light is then further attenuated along the ray PQ by a factor 

exp( -pm) = exp(-PYb -YI)). 

Therefore the total contribution of light from the line element ds is 

&exp(--p(g(y) + H - By))pw(hd-py(y - ~1)) do 

where Ia is the intensity of the sunlight incident on the cloud top. To get the total 
cloud glow I( yr, y2) along the ray QR, we must integrate as P varies from Q to R. 
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Replacing dr by y u”, we get 

= /” ( ( ( 1 Z,,exp -P g Y + H - Pu>))pwcp(a)exp(-py(y - Y,))Y~Y 
Yl 

= Z,,pwv(u)u/y2eq( -p(g(y) + H - P(Y - YI) - PYI + Y(Y - ~1))) dy 
Yl 

= Z,,pwcp(a)yexp( -p(H - Byl))~y2exp(-~b - P)(Y - YI) - m(Y)) dy 
Yl 

= 
Kjy2ev(--G -~d)ev(-~dy)) 4 

Yl 

where K = Z,pwcp(a)yexp(-p(H - By&) and 6 = p(y - /3). 

4. APPROXIMATIONS 

Now we approximate the exponential function by a polynomial. I have used the 
approximation 

exp(x) = sexp(x) = 0.25 (max(x + 2,0))* 

= 1 + x + 0.25 x2 ifx2 -2 
= 0 ifx 5 -2. 

This has the correct derivative at x = 0, meets the x axis smoothly at x = - 2, and 
is never negative. 

At the end of this section, we will show how to guarantee that x 2 - 2 whenever 
sexp(x) is used to compute Z( yi, y2). Applying this approximation to the exponen- 
tials in Z(y,, y2), we have 

exp( -S(y - yi)) = sexp(-a(y - Yi)) 

= 1 - S(y -y,) + 0.25 S2(y -y,j2 

= 1 + Sy, + 0.25 a2y; + (4 - 0.5d2yl)y + 0.W2y2 

= a + by + cy2 

where a, b, and c are expressions in 6 and y,. Similarly, we have 

ew(-w(Y)) = sexd-kdy)) 

= 1 - 6g(Y) + 0.25~Wy))~ 

= 1 + &Cd + 4dd)“. 
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Therefore 

I(Yl, Y2) = q yzsexp(-~(y -rJ)sexP(-M(Y)) 4 
Yl 

The first of these terms can be integrated trivially. Each of the other terms is of the 
form 

mij = /y>i( g( y )) j dy. 
Yl 

These integrals are moments of the region under the curve z = g(y), between y1 
and y2. Thus mol is the area of the region, m,,/m,, is the y coordinate of the 
center of gravity, m2t is the moment of inertia about the z axis, 0.5 m,Jm,, is the z 
coordinate of the center of gravity, and so forth. 

As discussed in Section 2, the values of g(y,J have been calculated in a vectorized 
loop, for a vector { yk} of unequally spaced y values y,. Since we interpret negative 
values of g(y) as transparent gaps where the density is 0, we replace g(y) below by 
max(O, g(y)) using a vectorized maximum function. The quantities 
yLmax(0, g(y))j(yk - y, -t) can then be calculated in vectorized loops, and the 
indefinite integral 

can be approximated by 

The definite integral j2yi( g(y))’ dy can then be approximated by subtracting 
Mij(kl) from Mij(k2), where ykl and yk2 are the precomputed y values nearest to 
yr and y2, and compensating for the differences yr - y,, and y, - y,,. Conceptu- 
ally, we tabulate the accumulated moment as an indefinite integral, and then 
determine the definite integral by subtraction. Each table entry is gotten by adding 
one new term to the previous entry, so the table is rapidly computed. The efficiency 
of the algorithm results from reusing the same indefinite integrals for each pixel in a 
vertical scan line. 
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FIG. 5. Projection in the YZ plane of a section through a cloud, with a ray piercing the cloud surface 
in the six points of y, through y,. 

Now consider the general case, where the ray intersects the cloud in a number of 
disjoint segments, projecting on the y axis to several intervals, say [ y,, y2], [ y3, y4] 
and [ys, y6], as shown in Fig. 5. Recall that /3 represents the slope dz/dy of the ray9 
as in Fig. 3. The y intervals can be found by using the singularity algorithm (see 
Newman and Sproull [lo]) to scan convert in the (/3, y) plane the polygon ap- 
proximating the cloud outlines (see Sect. 2). Since /3 repfesents the slope dz/dy of 
the ray, the vertices-of this polygon are (&, yk) and (hk, yk), where & = (H + 
g(v,, Y,$/Y~ and hk = W + hh, YNY~. 

The lists of intervals are never stored, but processed on the fly. The left-hand 
interval endpoint y@) for each pixel is initialized at 0 to account for a possible 
viewpoint inside the cloud, a transmission factor T(p) is initialized at 1, and an 
intensity J( /3) is initialized at 0. 

The polygon edges for & and hk are then processed in order of increasing k, and 
the total intensity J( 8) and transmission T( 8) are accumulated from front to back. 
Each “front facing” edge is used to update the left-hand endpoint yL(fl) for the 
pixels affected, and each “back facing edge” is used to create a right-hand endpoint 
yR( p). As each right-hand endpoint is found, the integral I( yL(fl), y&b)) is 
approximated as above, the value J( /3) is replaced by J( fi) + T( /3)1( yL( /3), yR( /3)), 
and the value 7’( /3) is then replaced by T( /3)exp( - yp( yR( p) - yL( 8))). At the end, 
T( /3) can be used to weight the contribution of the background color. 

We now return to the inequalities necessary to stay in the range where sexp(x) is 
quadratic. For the factor sexp( - S( y - yi)), the requirement is that - S( y - yJ 2 
- 2, or y I yi + 2/6. This can be guaranteed by replacing each y&b) by 
min( yR( /3), yL( /3) + 2/6). This is equivalent to assuming that light scattered from 
further than yL(@) + 2/6 is totally absorbed before it reaches the eye. In addition, 
yR( p) is bounded by the distance to the nearest opaque surface so that, for example, 
a cloud and a mountain will intersect properly. For the factor exp(- pg(y)), the 
requirement is that - pg(y) 2 - 2, or g(y) I 2/p. This can be guaranteed by 
correctly choosing g and p, or by replacing g(y) by min(g(y), 2/p). 

There are three separate places where the optical density is used: (a) to determine 
the attenuation of the sunlight along the ray SP of Fig. 4, (b) to attenuate the 
scattered light along the ray PQ, and (c) to attenuate the background or farther 
clouds along the ray QR. In the program, three corresponding constants p,, pb, -and 
pc are used, which can be set independently. This is less scientifica@ correct, but 
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gives greater flexibility in satisfying the inequalities of the previous paragraph, and 
in varying the appearance of the clouds. 

5. SCATTERING IN HAZE 

If there is any haze in the air below a layer of clouds, the pattern of light and 
shade caused by the clouds will be visible in the haze as columns of rays, apparently 
converging at the sun. This effect is particularly impressive when there are isolated 
gaps in an otherwise dense cloud cover. A computational scheme similar to the one 
above can be used to simulate this effect. 

Suppose the haze has a density 7. In Fig. 6, we assume for simplicity that the 
function h(x, u) is zero, so that the clouds lie entirely above the plane z = ZZ. 
Consider the ray EP from the eye E at the origin, in the direction ((u, 1, /3), meeting 
the cloud level at P = (a~,,, y,,, H). Let Q = (cry, y, Isy) be a point on the ray, and 
let R = (ay, y, H) be the point at cloud level directly above Q. 

As above, the amount of light passing through the cloud to point R is 
Z,exp( - pg( v)). The light scattered by a line element ((Y, 1, /3) dr at Q is W(P( a)y dv. 
If desired, the function q(a) and the density 7 can be wavelength dependent, to 
scatter more blue than red as does dust or haze in the air. The additional path length 
is i@ + m= H - /?JJ + yy = H + (y - /3)y, and absorbtion by the haze along 
this path multiplies the intensity by a factor exp( - 7( H + ( y - /?)y)). 

Therefore, the total intensity scattered by the haze is 

b=Jo ( 0) 0 “1 exp -pg Y 70~ a yexp(-T(H + (u - P)r)) 4~ 
0 

= Zo~xp(-~~)~~~(~)u~“exp(-~g(~) - 4 4. 
0 

This integral can also be approximated by the methods discussed above. Since 
E = ~(y - /3) is small, the upper limit y,, can be much larger without introducing 
errors from the polynomial approximation. 

The haze attenuates the color at P by a factor sexp( - em) = sexp( - 7yyO). The 
color Z at pixel (a, /3) is then 

Z = sexp( - 7yyo) (color at P) + IH. 

Thus the effects of haze can be calculated efficiently using the same tabulated 
functions Mij( k). 

FIG. 6. Ray from the eye at E to a cloud at P, with vertical sun rays TE and RQ. 
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The restriction that the sun be directly overhead is more limiting here, because the 
columns of light are usually perceived as radiating out from the sun, rather than as 
parallel. One could remove this restriction by computing the haze on a polar 
coordinate raster about the sun, using the methods above, which assume that each 
scan line represents a plane through the eye and the sun. The methods of Catmull 
and Smith [ll] could then be used to resample the haze into the coordinate system of 
the final raster image with which it is to be combined. 

6. COMPOSITE PICTURES 

The results of the cloud algorithm are shown in Figs. 7 through 11, taken from the 
animated film [12] prepared for presentation with this paper. Each has resdution 
510 by 384 pixels, and took approximately 22 s of Cray-1 time. 

The terrain data for the San Francisco Bay was taken from a Defense Mapping 
Agency altitude data base, and vertically exaggerated by a factor of 2. A ray tracing 
algorithm written by Upson and Weidhaas at Lawrence Livermore National Labora- 
tory produced the image of the terrain along a vertical scan line. The waves were 
added by the algorithm of Max [9], and were clamped by the algorithm of Norton 
et al. [7] to suppress any moire patterns. 

To compute the cloud shadows, a ray was traced from the terrain or water towards 
the sun direction. At the point (x, y), where this ray pierces the mean cloud plane, 
the vertical cloud thickness T = g( x, y ) - h ( X, y ) was found, and the sunlight was 
attenuated by the factor sexp( -pT). The result was used to multiply the diffuse 
reflection component of the terrain shading, and to modify the color of the wave 
shading component representing light scattered upward by particles in the water and 
then refracted towards the eye. 

FIG. 7. Scattered clouds above San Francisco airport, viewed from below. 
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FIG. 8. Scattered clouds above downtown San Francisco before it was settled, viewed from above 

FIG. 9. Dense clouds above Angel Island, with Mount Tamalpias in the distance. 
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FIG. 10. Sunlight shining through hole in clouds above San Bruno hills, lighting up haze 

FIG. 11. A 180” view of Marin County, showing San Francisco and the Golden Gate on the left, and 
Mt. Tamalpias on the right. 
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The clouds were then added by the algorithm described in Sections 2 through 4. 
Figures 7 through 9 used 11 terms in the trigonometric series, Fig. 10 used 7 terms, 
and Fig. 11 used 10 terms. The three density constants described at the end of 
Section 4 were p, = 0.0093, pb = 0.0163, and p, = 0.0198, with all distances in 
meters. 

Figure 11 shows a 180” view of Marin, in cylindrical coordinates, suitable for 
projection in the IMAX or OMNIMAX format (see [13]). It is part of a 49 frame 
cycle prepared for the Siggraph ‘84 Omnimax film. The wave vectors for the 
trigonometric cloud terms were arranged so that each cloud moves one rank towards 
the viewer during each cycle. Each vertical scan line represents a vertical plane 
through the eye, so the height field algorithms still apply. It took 2: min of Cray-1 
time to compute Fig. 11, at 1764 X 1280 resolution. 

There is a noticeable defect in the single scattering model: clouds are actually 
brighter than the model predicts when they are thick enough for multiple scattering 
to be important, but agree with the model near their almost transparent edges where 
multiple scattering is unlikely. 

Light coming directly from the sun is not completely lost after it has been 
scattered once; it can still diffuse down through the cloud by further scattering. 
However, the light from the background can no longer contribute to the coherent 
transmitted image after it has been scattered once. 

If pc > pb, the attenuation of the background increases more rapidly than the 
cloud’s internal glow near its edge. This darkens the cloud edges realistically, 
partially compensating for these defects in the model. 

The haze color was mixed with the tinal picture using the factor sexp( - 7d ), where 
d is the distance to the closest ray piercing point. In Figs. 7 through 9, r = 0.00004, 
causing complete obscuration at d = 50,000 meters. 

In Fig. 10, T was 0.0002, and the haze glow of Section 5 was added. The cloud 
reflections were generated in the same way as the cloud shadows. Reflected rays were 
computed as in Max [9], and traced until they pierced the mean cloud plane. If the 
cloud thickness T at the piercing point was greater than zero, the factor sexp( - pT) 
was used to mix a light color for the cloud edges with a dark color for the thicker 
regions. In Fig. 10, the reflections of the clouds and sky were further attenuated by 
the haze along the reflected ray from the waves to the mean cloud plane. 

No anti-aliasing has been used. Nevertheless, the cloud profiles look quite smooth, 
because the variable transparency near their edges produces an averaging effect 
similar to that of an anti-aliasing algorithm. 

The sun was in the direction (-l,O, 3) for the purposes of terrain and wave 
shading and cloud shadows, and was vertical for the purpose of cloud shading. This 
inconsistency is not disturbing in the pictures. 

7. CONCLUSION 

The single scattering model, with a quadratic approximation to the exponent&., 
can give realistic renderings of light diffusion through semi-transparent clouds. By 
reusing accumulated moments, the scattering computations can be made very 
efficient. 
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